Henrietta Swan Leavitt
Radcliffe College (B.S)
---
1892
astronomy, observational astronomy, variable stars, novae
Introduction to Astronomy, Observational Astronomy, Galactic Dynamics, Stellar Structure and Evolution, Cosmology, Astrophysics, Mathematical Physics
https://en.wikipedia.org/wiki/Henrietta_Swan_Leavitt
G
Scientist Biography
Biographical information
Henrietta Swan Leavitt was born in 1868 in Massachusetts. She attended Radcliffe College, which was Harvard’s School for women at the time. Radcliffe College was a liberal arts college, so Leavitt studied a variety of subjects, including math, art, philosophy, and language. It was not until her final year of study that she took a course on astronomy at the Harvard College Observatory. Leavitt then became a volunteer as a research assistant at the Harvard College Observatory, where she would become a 'computer'. In this role, Leavitt analyzed the data from the telescopes that she was not allowed to operate. Leavitt studied variable stars, which are stars that vary in brightness over time. From this work studying variable stars, she deduced that there is a relationship between the star’s period of dimming and the star’s brightness in general. This property can then determine the distance between the earth and the star. Leavitt did suffer from health issues in her life and began to lose her hearing at age 17. In her adult life, she became deaf. She died at 53 years old from cancer on December 12th, 1921.
Relevant Concepts
Astronomy, Variable Stars, Stellar Distances, Distance Ladder, Period-Luminosity Relation, Leavitt LawResearch Areas:
astronomy, observational astronomy, variable stars, novaeKey Contributions
Period-Luminosity Relation (Leavitt Law): The Period-Luminosity relation was discovered by Henrietta Swan Leavitt in 1908 when studying Cepheids, which are stars that periodically dim and brighten. These Cepheids that Leavitt observed were located in the Large and Small Magellanic Clouds. It was seen that the brighter the Cepheids were, the longer it took for the Cepheids to complete a full cycle of dimming and brightening. From this, Leavitt devised the following equation m - M = 5 log(d,10), where d is distance, m is apparent magnitude, and M is absolute magnitude. This equation can then determine the distance between us, these Cepheids, and the bodies that the Cepheids are located in. This discovery gave tangible distances of the bodies that surround us and cued scientists into the astronomical size of the universe.